A role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B
نویسندگان
چکیده
The precise control of microRNA (miRNA) biosynthesis is crucial for gene regulation. Lin28A and Lin28B are selective inhibitors of biogenesis of let-7 miRNAs involved in development and tumorigenesis. Lin28A selectively inhibits let-7 biogenesis through cytoplasmic uridylation of precursor let-7 by TUT4 terminal uridyl transferase and subsequent degradation by Dis3l2 exonuclease. However, a role of this uridylation pathway remains unclear in let-7 blockade by Lin28B, a paralog of Lin28A, while Lin28B is reported to engage a distinct mechanism in the nucleus to suppress let-7. Here we revisit a functional link between Lin28B and the uridylation pathway with a focus on let-7 metabolism in cancer cells. Both Lin28A and Lin28B interacted with Dis3l2 in the cytoplasm, and silencing of Dis3l2 upregulated uridylated pre-let-7 in both Lin28A- and Lin28B-expressing cancer cell lines. In addition, we found that amounts of let-7 precursors influenced intracellular localization of Lin28B. Furthermore, we found that MCPIP1 (Zc3h12a) ribonuclease was also involved in degradation of both non-uridylated and uridylated pre-let-7. Cancer transcriptome analysis showed association of expression levels of Lin28B and uridylation pathway components, TUT4 and Dis3l2, in various human cancer cells and hepatocellular carcinoma. Collectively, these results suggest that cytoplasmic uridylation pathway actively participates in blockade of let-7 biogenesis by Lin28B.
منابع مشابه
miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer
Human cancers often exhibit increased microRNA (miRNA) biogenesis and global aberrant expression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-203 enhances the biogenesis of tumor suppressor let-7 in lung cancer by directly targeting LIN28B. Specially, we found that the LIN28B protein levels were dramatically inc...
متن کاملMono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs
RNase III Drosha initiates microRNA (miRNA) maturation by cleaving a primary miRNA transcript and releasing a pre-miRNA with a 2 nt 3' overhang. Dicer recognizes the 2 nt 3' overhang structure to selectively process pre-miRNAs. Here, we find that, unlike prototypic pre-miRNAs (group I), group II pre-miRNAs acquire a shorter (1 nt) 3' overhang from Drosha processing and therefore require a 3'-en...
متن کاملTUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation
As key regulators in cellular functions, microRNAs (miRNAs) themselves need to be tightly controlled. Lin28, a pluripotency factor, was reported to downregulate let-7 miRNA by inducing uridylation of let-7 precursor (pre-let-7). But the enzyme responsible for the uridylation remained unknown. Here we identify a noncanonical poly (A) polymerase, TUTase4 (TUT4), as the uridylyl transferase for pr...
متن کاملThe LIN28/let-7 Pathway in Cancer
Among all tumor suppressor microRNAs, reduced let-7 expression occurs most frequently in cancer and typically correlates with poor prognosis. Activation of either LIN28A or LIN28B, two highly related RNA binding proteins (RBPs) and proto-oncogenes, is responsible for the global post-transcriptional downregulation of the let-7 microRNA family observed in many cancers. Specifically, LIN28A binds ...
متن کاملLin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms
Lin28A and Lin28B selectively block the expression of let-7 microRNAs and function as oncogenes in a variety of human cancers. Lin28A recruits a TUTase (Zcchc11/TUT4) to let-7 precursors to block processing by Dicer in the cell cytoplasm. Here we find that unlike Lin28A, Lin28B represses let-7 processing through a Zcchc11-independent mechanism. Lin28B functions in the nucleus by sequestering pr...
متن کامل